Example 4

Test name: calliper gauge (analog).

Result: budget of uncertainty of distance for a calliper gauge (analog).

Description: distance measurement with a calliper gauge by an expert.

Quan- tity X _i	Source of uncertainty	X _i	Туре	Error quantity, $S_p(X_i)$	Probability shape	Distri- bution division factor, k	Standard uncertainty, u(X _i)	Sensitivity coefficient,	Uncertainty contribution, $u_i(y)$
δ_{INST}	Specification for instrument	X _{INST}	В	50 µm	Rectangular	√3	29 µm	1	29 µm
$\delta_{\sf read}$	Reading of instrument (e.g. because of parallax)	X _{read}	В	5 μm	Rectangular	√3	2,89 µm	1	2,89 μm
δ_{temp}	Ambient temperature fluctuation	X_{temp}	В	0,1 μm	Rectangular	$\sqrt{3}$	0,0577 μm	1	0,0577 μm
$\delta_{ ext{calibr}}$	Calibration of gauge	X _{calibr}	В	0,5 µm	Rectangular	√3	2,89 µm	1	1,89 µm
$\delta_{\sf abbe}$	Canting of position of the measuring surface	X _{abbe}	В	60 µm	Rectangular	√3	35 μm	1	35 µm
$\delta_{\sf user}$	Difference in contact pressure by user	X _{user}	В	100 µm	Rectangular	√3	60 µm	1	60 µm
					Combined standard uncertainty, $u_{\rm c}$				75 µm
					Coverage factor k_p = 2; confidence level: 95 %				-
					Expanded uncertainty, $U = u_c \times k_p$				150 µm

Reported result – The measured distance is $m_x \mu m \pm 150 \mu m$, k = 2, 95 % confidence level.

 δ_{INST}

MPE is the maximum permissible error given by the manufacturer. According to the technical information of the manufacturer, MPE = 0.05 mm.

Distribution is rectangular, $k = \sqrt{3}$, $u_1 = 0.05$ mm/ $\sqrt{3} = 29$ μ m.

 $\delta_{\sf read}$

reading error — depends on human influences and practical experience. Estimated as ±0,005 mm.

Distribution is rectangular, $k = \sqrt{3}$, $u_2 = 0.005$ mm/ $\sqrt{3} = 2.89$ μ m.

 δ_{temp}

temperature error – because of the specific range of the caliper, influence of temperature can be neglected.

Distribution is rectangular, $k = \sqrt{3}$, $u_3 = 0,0001$ mm/ $\sqrt{3} = 0,0577$ µm.

 $\delta_{
m calibr}$

calibration of gauge - according to calibration certificate.

Distribution is rectangular, $k = \sqrt{3}$, $u_4 = 0,005$ mm/ $\sqrt{3} = 2,89$ μ m.

 $\delta_{
m abbe}$

canting – because of the position of the measuring surface.

Distribution is rectangular, $k = \sqrt{3}$, $u_5 = 0.06$ mm/ $\sqrt{3} = 35$ μ m.

 $\delta_{\sf user}$

contact pressure – influence of user, depends on the practical experience of the expert.

Distribution is rectangular, $k = \sqrt{3}$, $u_6 = 0.1$ mm/ $\sqrt{3} = 60$ μ m.