Абсолютно точных измерений не существует. При проведении измерения его результат зависит от измерительной системы, методики измерения, квалификации оператора, внешних условий и других факторов. Так, если измерять одну и ту же величину несколько раз одним способом и в одинаковых условиях, то, как правило, полученные значения измеряемой величины всякий раз будут разными. Их среднее должно обеспечить значение оценки истинного значения величины, которая будет более достоверной, чем отдельное показание. Разброс показаний и их число дают некоторую информацию в отношении среднего значения как оценки истинного значения величины, однако, этого недостаточно. В руководстве по оценке неопределенности измерений (GUM) предложено выражать результат измерения как наилучшую оценку измеряемой величины вместе с соответствующей неопределенностью измерения. Неопределенность измерения можно представить через степень уверенности. Такая неопределенность будет отражать неполноту знания об измеряемой величине. Понятие «уверенности» очень важно, т. к. оно перемещает метрологию в сферу, где результат измерения должен рассматриваться и численно определяться в терминах вероятностей, которые выражают степень доверия. Неопределенность измерения — «неотрицательный параметр, характеризующий рассеяние значений, приписываемых измеряемой величине на основании используемой информации».
Сравнительный анализ двух подходов к выражению характеристик точности измерений
Понятие погрешности измерений как разности между результатом измерений и истинным (действительным) значением измеряемой величины используется для описания точности измерений в НД ГСИ по метрологии. Неопределенность измерений понимают как неполное знание значения измеряемой величины и для количественного выражения этой неполноты вводят распределение вероятностей возможных (обоснованно приписанных) значений измеряемой величины.Из рассмотренных метрологических ситуаций можно предложить общее правило: результаты измерений в большинстве метрологических ситуаций характеризуются неопределенностью, а нормативы точности средств измерений, измерительных и контрольных процедур характеризуются погрешностью. Таким образом, понятия «неопределенность» и «погрешность» рекомендуется гармонично использовать без взаимного противопоставления и исключения одного из них.
Необходимость учета неопределенности при оценке результатов измерений
Измерения выполняются ради оценки результата, сравнения его с нормативами и правила оценки результатов обуславливают требования к выполнению измерений.Нормативные документы, определяющие требования к оценке результатов измерений.
- ГОСТ Р ИСО 10576-1-2006 «РУКОВОДСТВО ПО ОЦЕНКЕ СООТВЕТСТВИЯ УСТАНОВЛЕННЫМ ТРЕБОВАНИЯМ»
- ГОСТ 34100.1-2017/ISO/IEC Guide 98-1:2009 “Неопределенность измерения. Часть 1. Введение в руководства по выражению неопределенности измерения”
- Межгосударственный стандарт ГОСТ ИСО МЭК 17025-2009
- Письмо Роспотребнадзора от 13.06.2012 г. №01/6620-12-32
Ключевые моменты из документов
ГОСТ Р ИСО 10576-1— 2006 «РУКОВОДСТВО ПО ОЦЕНКЕ СООТВЕТСТВИЯ УСТАНОВЛЕННЫМ ТРЕБОВАНИЯМ»► Показать
ГОСТ 34100.1-2017/ISO/IEC Guide 98-1:2009 "Неопределенность измерения. Часть 1. Введение в руководства по выражению неопределенности измерения" (Введен с 01.09.2018)
► Показать
ФЕДЕРАЛЬНАЯ СЛУЖБА ПО НАДЗОРУ В СФЕРЕ ЗАЩИТЫ ПРАВ ПОТРЕБИТЕЛЕЙ И БЛАГОПОЛУЧИЯ ЧЕЛОВЕКА ПИСЬМО от 13 июня 2012 года N 01/6620-12-32 Об оценке данных, получаемых при инструментальных измерениях физических факторов неионизирующей природы
► Показать
СанПиН 2.2.4.3359-16 "Санитарно-эпидемиологические требования к физическим факторам на рабочих местах" (Общие положения)
► Показать
Межгосударственный стандарт ГОСТ ИСО/МЭК 17025-2009 "Общие требования к компетентности испытательных и калибровочных лабораторий" (введен в действие приказом Федерального агентства по техническому регулированию и метрологии от 4 апреля 2011 г. N 41-ст)
► Показать
Порядок оценки неопределенности измерений
- ГОСТ 34100.1-2017/ISO/IEC Guide 98-1:2009 “Неопределенность измерения. Часть 1. Введение в руководства по выражению неопределенности измерения”
- Межгосударственный стандарт ГОСТ 34100.3-2017/ISO/IEC Guide 98-3:2008 “Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения”
- Рекомендации по метрологии Р 50.2.038-2004 “Государственная система обеспечения единства измерений. Измерения прямые однократные. Оценивание погрешностей и неопределенности результата измерений”
Разновидности неопределенности измерений
Тип A
► Показать
► Показать
► Показать
► Показать
► Показать
Погрешность и неопределенность
СКО, характеризующее случайную погрешность <=> Стандартная неопределенность, вычисленная по типу АСКО, характеризующее неисключенную систематическую погрешность (погрешность СИ) <=> Стандартная неопределенность, вычисленная по типу В
СКО, характеризующее суммарную погрешность <=> Стандартная неопределенность, вычисленная по типу В
Доверительные границы погрешности <=> Расширенная неопределенность
Погрешности (составляющие неопределенности) при выполнении измерений
- инструментальная (приборная) — определяется конструкцией СИ; (основная, дополнительная; предел допускаемой погрешности)
- систематическая — обусловлена методом измерения;
- случайная — разброс результатов, обусловленный совокупностью различных факторов;
- «промах» — грубая ошибка
Вычисление неопределенности прямых измерений
- Выявление «промахов» и исключение их из выборки
- Учет систематической погрешности измерения (например, умножение освещенности, измеренной люксметром Ю-116 на поправочный коэффициент для данного типа источника света)
- Вычисление стандартной неопределенности по типу А — среднего квадратического отклонения (Аналогично вычислению случайной погрешности)
- Вычисление стандартной неопределенности по типу В (Аналогично вычислению неисключенной погрешности)
- Определение Расширенной неопределенности (Аналогично суммарной погрешности с доверительными границами)
Метод исключения «промахов» по Q-критерию: (см также ГОСТ Р 8.736-2011)
Q=(X1-X2)/R
Значения Q-критерия в доверительной вероятности в зависимости от числа измерений (ni)
Наличие грубой погрешности доказано, если Q > Q (Р, ni).
Пример
► Показать
Оценка интервала неопределённости при выполнении прямых измерений, для которых отсутствуют показатели точности в методиках измерений
Вычисление стандартной неопределённости измерений.
Стандартная неопределенность измерений (u) включает два компонента:
- среднее квадратическое отклонение, обусловленное случайными колебаниями результата последовательных измерений, соответствует стандартной неопределенности типа А при отсутствии других составляющих, не связанных со статистически случайными процессами (SX);
- среднее квадратическое отклонение неисключенной систематической погрешности (НСП) измерения (как правило, погрешность средства измерений — СИ) (SΘ)
u = √ S 2Θ + S2x
\ПРИМЕЧАНИЕ: данный способ оценивания неопределённости измерений в терминологии ГОСТ Р 54500.3 является оцениванием по типу В. (настоящий ГОСТ отменен с 1 сентября 2018 г. в связи с принятием и введением в действие ГОСТ 34100.3-2017/ISO/IEC Guide 98-3:2008)
Среднеквадратическое отклонение: (синонимы: среднее квадратическое отклонение, среднеквадратичное отклонение, квадратичное отклонение; близкие термины: стандартное отклонение, стандартный разброс) — в теории вероятностей и статистике наиболее распространённый показатель рассеивания значений случайной величины относительно её математического ожидания. При ограниченных массивах выборок значений вместо математического ожидания используется среднее арифметическое совокупности выборок.
График плотности вероятности нормального распределения и процент попадания случайной величины на отрезки, равные среднеквадратичному отклонению (σ). Практически все значения нормально распределённой случайной величины лежат в интервале x±3σ
График плотности вероятности прямоугольного распределения
SΘ= √(Θ+ – Θ –)2/ 12 = Θ/√3
гдеΘ – граница НСП симметричного доверительного интервала (выражена как абсолютная погрешность СИ);
Θ+, Θ– верхняя и нижняя граница НСП для несимметричных доверительных интервалов, например, когда погрешность СИ несимметрична в положительную и отрицательную сторону (при измерении плотности потока энергии).
где
Xi — результат i-ro наблюдения (единичного замера),
X̅ — среднее арифметическое значение оценки величины X (результат измерения),
n — количество наблюдений (замеров); для многократных измерений количество замеров должно быть не менее 4.
Встречаются ситуации, когда измерения проводятся с однократным наблюдением, и в этом случае стандартная неопределённость измерений оценивается только как Sθ., которая рассчитывается на основе погрешностей СИ.
Выполнение однократных измерений может быть обусловлено следующими факторами:
- производственной необходимостью (невозможность повторения измерений, экономическая целесообразность и т. д.);
- возможностью пренебрежения случайными погрешностями (SX).
Примечание 2 — Если Θ/SX < 0,8, то величиной SΘ при расчёте u можно пренебречь (Р 50.2.038)
Таким образом, при вычислении стандартной неопределенности сначала вычисляется SX, затем Sθ для основной погрешности или предела допускаемой погрешности. Если необходимо учесть дополнительную погрешность, то вычисляется также величина стандартной неопределенности, обусловленной дополнительной погрешностью SΘД также как SΘ. После этого вычисляется величина суммарной стандартной неопределенности.
u = √(S2Θ + S2ΘД + S2x
При измерениях с 1 — кратным наблюдением SХ не вычисляется и не учитывается
Вычисление расширенной неопределённости измеренийРасширенная неопределенность измерений (U) определяется как суммарная стандартная неопределенность (u), умноженная на коэффициент охвата (k):
U=k×u
Коэффициент охвата для уровня доверия 95% для двухстороннего интервала охвата можно принять равным 2, а для одностороннего интервала охвата равным 1,64 при условии, что количество замеров будет не менее 11, что соответствует числу степеней свободы, равному 10 (ГОСТ 54500.3, п. 6.3.3, G6.6 (настоящий ГОСТ отменен с 1 сентября 2018 г. в связи с принятием и введением в действие ГОСТ 34100.3-2017/ISO/IEC Guide 98-3:2008). Таким образом, чем больше измерений в выборке, тем меньше ожидаемая неопределенность измерений.Одно и двусторонний интервал охвата
Интервал охвата = интервал неопределённости (плохой перевод: ГОСТ Р 54500.3-2011/Руководство ИСО/МЭК 98-3:2008 (п. 6.2.2) Раньше использовались термины «одно — и двусторонние доверительные интервалы».
Если неопределённость оценивается по типу А, то интервал охвата=интервалу неопределённости К чему ведет недостаточное количество измерений?
Коэффициент охвата для уровня доверия 95% для двухстороннего интервала охвата можно принять равным 2, а для одностороннего интервала охвата равным 1,64 при условии, что количество замеров будет не менее 11, что соответствует числу степеней свободы, равному 10 (ГОСТ 54500.3, п. 6.3.3, G6.6 ). Таким образом, чем больше измерений в выборке, тем меньше ожидаемая неопределенность измерений.
Расширенную неопределенность U вычисляют по формуле: U=k×uc
Если число измерений > 11, то k можно принять равным 2 для двухстороннего коэффициента охвата и 1,64 для одностороннего коэффициента охвата При меньшем числе измерений k зависит от числа измерений (n) В таблице представлены его величины при доверительной вероятности 95%
Оценка интервала неопределённости при использовании аттестованных методик измерений с установленными показателями точности
Аттестованная методика измерений (МИ) должна содержать значения установленной точности измерений в виде расширенной неопределённости.При наличии установленного МИ диапазона расширенной неопределённости (U), приведенного в используемой аттестованной МИ, в протоколе измерений следует указывать ее значение, если целью исследования является оценка значения величины с некоторой точностью. Как правило, аттестованные МИ содержат установленные значения расширенной неопределённости измерений для двухстороннего охвата при уровне доверия 95%: ±U(95%), при этом используется коэффициент охвата (k), равный 2. В этом случае результат измерений приводится в протоколе как:
<среднее значение> ± U(95%)
Если целью исследования является сопоставление результата измерений с предельным значением (нормативом), когда область допустимых значений располагается ниже (или выше) норматива, то можно оценить диапазон расширенной неопределённости, используя односторонний интервал охвата, который меньше двухстороннего. Для его оценки необходимо значение стандартной неопределённости измерений (u), которое можно найти в МИ, либо рассчитать по формуле (п.4.3.3 ГОСТ Р 54500.3 (настоящий ГОСТ отменен с 1 сентября 2018 г. в связи с принятием и введением в действие ГОСТ 34100.3-2017/ISO/IEC Guide 98-3:2008):u = U/k = U/2
Верхняя (нижняя) граница одностороннего интервала неопределённости для уровня доверия 95% (Y̅) рассчитывается как среднее значение (Y̅), к которому прибавлен односторонний интервал охвата (1,64*u) с плюсом или минусом:Y̅+1,64×u или Y̅-1,64×u
Решение о соответствии может быть принято, если односторонний интервал охвата:(-∞; Y̅+1,64×u] или [Y̅-1,64×u; +∞)
находится в области допустимых значений (то есть ниже или, соответственно, выше предельного значения).
Представление результатов оценивания неопределенности
Форма представления результата измерения
à ± U(Р)
Возможно введение в форму протокола колонки " неопределенность измерений" и/или «результат с учетом неопределенности измерений»